Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit

Front Cell Neurosci. 2023 Oct 18:17:1263591. doi: 10.3389/fncel.2023.1263591. eCollection 2023.

Abstract

Introduction: At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats.

Methods: We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades.

Results and discussion: Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.

Keywords: acclimatization; central pattern generation; climate change; degeneracy; phase constancy; robustness; stomatogastric ganglion.

Grants and funding

This research was supported by the Senior Fellowship of the Alfried Krupp Kolleg in Greifswald, Germany (to WS). Further support came from NSF IOS 1755098 (to WS) and a Faculty Research Award from Illinois State University (to WS). NE-N was supported for a doctoral dissertation by the Bundesministerium für Bildung und Forschung (Project MERGE; grant no. FKZ 01DN20002), Germany. The collection of crabs was funded by the DFG RTG 2010 “RESPONSE” and supported by an ASSEMBLE Plus access grant awarded to Gabriela Torres (European Union’s Horizon 2020 research and innovation programme under grant agreement No 730984, ASSEMBLE Plus project: ROSW – PID 10370 – 8th call). JPG was supported for a doctoral dissertation by the Deutsche Forschungsgemeinschaft (DFG) Research Training Group 2010 “RESPONSE,” Germany.