Improved supercapacitors and water splitting performances of Anderson-type manganese(III)-polyoxomolybdate through assembly with Zn-MOF in a host-guest structure

J Colloid Interface Sci. 2024 Jan 15;654(Pt B):1393-1404. doi: 10.1016/j.jcis.2023.10.136. Epub 2023 Oct 28.

Abstract

Enhancing performance through the combination of polyoxometalates (POMs) clusters with metal-organic frameworks (MOFs) that contain various transition metals is a challenging task. In this study, we synthesized a polyoxometalate-based metal-organic framework (POMOF) named HRBNU-5 using a solvothermal method. HRBNU-5 is composed of Zn[N(C4H9)4][MnMo6O18{(OCH2)3CNH2}2]@Zn3(C9H3O6)2·6C3H7NO, which includes two components: Zn[N(C4H9)4][MnMo6O18{(OCH2)3CNH2}2]·3C3H7NO ({Zn[MnMo6]}) and Zn3(C9H3O6)2·3C3H7NO (Zn-BTC). Structural characterization confirmed the host-guest structure, with Zn-BTC encapsulating {Zn[MnMo6]}. In a three-electrode system, HRBNU-5 exhibited a specific capacitance of 851.3 F g-1 at a current density of 1 A/g and retained high stability (97.2 %) after 5000 cycles. Additionally, HRBNU-5 performed well in aqueous-symmetric/asymmetric supercapacitors (SSC/ASC) in terms of energy density and power density in a double-electrode system. Moreover, it demonstrated excellent catalytic performance in a 1.0 M KOH solution, with low overpotentials and Tafel slopes for hydrogen and oxygen evolution reactions: 177.1 mV (η10 HER), 126.9 mV dec-1 and 370.3 mV (η50 OER), 36.3 mV dec-1, respectively, surpassing its precursors and most reported studies. HRBNU-5's positive performance is attributed to its host-guest structure, high electron-transfer conductivity, and porous structure that enhances efficient mass transport. This work inspires the design of Anderson-type POMOF electrode materials with multiple active sites and a well-defined structure.

Keywords: 1,3,5-benzylcarboxylic acid; Anderson-type polyoxometalates; Hydrogen evolution reaction; Oxygen evolution reaction; Supercapacitor.