In-situ free-standing inorganic 2D Cs2PbI2Cl2 nanosheets for efficient self-powered photodetectors with carbon electrode

J Colloid Interface Sci. 2024 Jan 15;654(Pt B):1356-1364. doi: 10.1016/j.jcis.2023.10.126. Epub 2023 Oct 28.

Abstract

Inorganic two-dimensional (2D) perovskites possess excellent thermal stability and high charge mobility, making them an attractive choice for stable optoelectronic devices such as photodetectors (PDs). The formation of an appropriate inorganic 2D perovskite structure is of great importance to efficient PDs, especially to that of planar self-powered photovoltaic PDs featuring perpendicular charge transport channels. Herein, we implemented morphological engineering on wide bandgap inorganic 2D perovskite, Cs2PbI2Cl2, demonstrating a successful preparation of in-situ free-standing nanosheets structure with proper charge channels for photovoltaic type self-powered PDs. Compared with its counterpart with a nanoblock morphology, the 2D nanosheet Cs2PbI2Cl2 film exhibits enhanced charge mobility and purified Ruddlesden-Popper phase that can withstand high-energy electron beam radiation, accelerated thermal aging and long-term shelf storage. Sandwiching Cs2PbI2Cl2 nanosheet film in between tin oxide (SnO2) and polythiophene (P3HT) as electron and hole acceptors, respectively, the constructed photovoltaic type structure exhibits effective dissociation of excitons at the cascade type-II interface. The nanosheets enable lower dark current and more efficient charge collection than the nanoblock structure. As a result, the self-powered photodetectors with 2D Cs2PbI2Cl2 nanosheets deliver an outstanding responsivity of 698 mW/cm2 and a detectivity of 8.6×1012 Jones. The stable PDs can be applied to monitor ultraviolet irradiation in real outdoor conditions. Our work demonstrates the significant role of morphology tuning of 2D inorganic perovskite in stable, cost-effective and efficient photodetectors.

Keywords: Carrier transport; Morphological engineering; Nanosheet; Self-powered photodetectors; Two-dimensional perovskite.