Quantitative Dual-Energy X-ray Imaging Based on K-Edge Absorption Difference

J Phys Chem Lett. 2023 Nov 9;14(44):10074-10079. doi: 10.1021/acs.jpclett.3c02827. Epub 2023 Nov 2.

Abstract

Conventional flat panel X-ray imaging (FPXI) employs a single scintillator for X-ray conversion, which lacks energy spectrum information. The recent innovation of employing multilayer scintillators offers a route for multispectral X-ray imaging. However, the principles guiding optimal multilayer scintillator configuration selection and quantitative analysis models remain largely unexplored. Here, we propose to adopt the K-edge absorption coefficient as a key parameter for selecting tandem scintillator combinations and to utilize the coefficient matrix to calculate the absorption efficiency spectrum of the sample. Through a dual scintillator example comprising C4H12NMnCl3 and Cs3Cu2I5, we establish a streamlined quantitative framework for deducing X-ray spectra from scintillation spectra, with an average relative error of 6.28% between the calculated and measured sample absorption spectrum. This insight forms the foundation for our quantitative method to distinguish the material densities. Leveraging this tandem scintillator configuration, in conjunction with our analytical tools, we successfully demonstrate the inherent merits of dual-energy X-ray imaging for discerning materials with varied densities and thicknesses.