Source apportionment, health risk assessment, and trajectory analysis of black carbon and light absorption properties of black and brown carbon in Delhi, India

Environ Sci Pollut Res Int. 2023 Nov;30(54):116252-116265. doi: 10.1007/s11356-023-30512-w. Epub 2023 Nov 1.

Abstract

Black Carbon (BC) is an important atmospheric pollutant, well recognized for adverse health and climatic effects. The present work discusses the monthly and seasonal variations of BC sources, health risks, and light absorption properties. The measurement was done from January to December 2021 using a seven wavelength aethalometer. Annual average BC concentration during the study period was 12.2 ± 8.8 μg/m3 (ranged from 1.9 - 52.2 μg/m3). Results represent highest BC concentration during winter (W), followed by post-monsoon (P-M), summer (S), and monsoon (M) seasons where the fossil fuel (FF) combustion is the major source during W, S, and M seasons and biomass burning (BB) during the P-M season. The health risk assessment revealed that individuals in Delhi are exposed to BC levels equivalent to inhaling the smoke from 36 passively smoked cigarettes (PSC) everyday. The risk is highest during W reaching upto 71 PSC and minimum during M i.e., 9 PSC. The light absorption properties were calculated for BC (AbsBC) and Brown carbon (AbsBrC). AbsBC and varied from 229-89 Mm-1 between 370-950 nm and AbsBrC varied from 87-12 Mm-1 between 370-660 nm. AbsBC contributed substantially to total absorption at all wavelengths, while AbsBrC contribution is quite significant in the UV region only. Trajectory analysis confirmed significant influence of regional sources (e.g., biomass-burning aerosols from northwest and east direction) on air quality, health risks, and light absorption properties of BC over Delhi especially during the P-M season. The BB events of Punjab, Haryana, Uttar Pradesh, and eastern Pakistan seems to have significant influence on Delhi's air quality predominantly during P-M season.

Keywords: Black Carbon; Brown Carbon; Health risk assessment; Light absorption properties; Source apportionment.

MeSH terms

  • Air Pollutants* / analysis
  • Carbon / analysis
  • Environmental Monitoring
  • Humans
  • India
  • Risk Assessment
  • Soot / analysis

Substances

  • Air Pollutants
  • Carbon
  • Soot