The functional significance of aberrant cervical counts in sloths: insights from automated exhaustive analysis of cervical range of motion

Proc Biol Sci. 2023 Nov 8;290(2010):20231592. doi: 10.1098/rspb.2023.1592. Epub 2023 Nov 1.

Abstract

Besides manatees, the suspensory extant 'tree sloths' are the only mammals that deviate from a cervical count (CC) of seven vertebrae. They do so in opposite directions in the two living genera (increased versus decreased CC). Aberrant CCs seemingly reflect neck mobility in both genera, suggesting adaptive significance for their head position during suspensory locomotion and especially increased ability for neck torsion in three-toed sloths. We test two hypotheses in a comparative evolutionary framework by assessing three-dimensional intervertebral range of motion (ROM) based on exhaustive automated detection of bone collisions and joint disarticulation while accounting for interacting rotations of roll, yaw and pitch. First, we hypothesize that the increase of CC also increases overall neck mobility compared with mammals with a regular CC, and vice versa. Second, we hypothesize that the anatomy of the intervertebral articulations determines mobility of the neck. The assessment revealed that CC plays only a secondary role in defining ROM since summed torsion (roll) capacity was primarily determined by vertebral anatomy. Our results thus suggest limited neck rotational adaptive significance of the CC aberration in sloths. Further, the study demonstrates the suitability of our automated approach for the comparative assessment of osteological ROM in vertebral series.

Keywords: articular surfaces; cervical vertebrae; kinematics; mobility; vertebral biomechanics; zygapophyses.

MeSH terms

  • Animals
  • Biological Evolution
  • Biomechanical Phenomena
  • Locomotion
  • Range of Motion, Articular
  • Sloths*
  • Spine