Thermal impacts on transcriptome of Pectoralis major muscle collected from commercial broilers, Thai native chickens and its crossbreeds

Anim Biosci. 2024 Jan;37(1):61-73. doi: 10.5713/ab.23.0195. Epub 2023 Oct 31.

Abstract

Objective: The main objective of this study was to define molecular mechanisms associated with thermal stress responses of chickens from commercial broilers (BR, Ross 308), Thai native chickens (NT) and crossbreeds between BR×NT (H75).

Methods: Twenty days before reaching specific market age, chickens from each breed were divided into control and thermal-stressed groups. The stressed groups were exposed to a cyclic thermal challenge (35°C±1°C for 6 h, followed by 26°C±1°C for 18 h) for 20 days. Control group was raised under a constant temperature of 26°C±1°C. Pectoralis major (n = 4) from each group was collected for transcriptome analysis using HiSeq Illumina and analysis of glycogen and lactate. Gene expression patterns between control and thermalstressed groups were compared within the same breeds.

Results: Differentially expressed transcripts of 65, 59, and 246 transcripts for BR, NT, and H75, respectively, were revealed by RNA-Seq and recognized by Kyoto encyclopedia of genes and genomes database. Pathway analysis underlined altered glucose homeostasis and protein metabolisms in all breeds. The signals centered around phosphatidylinositol 3-kinase (PI3K)/Akt signaling, focal adhesion, and MAPK signaling in all breeds with slight differences in molecular signal transduction patterns among the breeds. An extensive apoptosis was underlined for BR. Roles of AMPK, MAPK signaling and regulation of actin cytoskeleton in adaptive response were suggested for H75 and NT chickens. Lower glycogen content was observed in the breast muscles of BR and NT (p<0.01) compared to their control counterparts. Only BR muscle exhibited increased lactate (p<0.01) upon exposure to the stress.

Conclusion: The results provided a better comprehension regarding the associated biological pathways in response to the cyclic thermal stress in each breed and in chickens with different growth rates.

Keywords: Chickens; Gene Expression; Native Breed; RNA-Seq; Thermal Stress.