Mitochondrial-targeting effector RsIA_CtaG/Cox11 in Rhizoctonia solani AG-1 IA has two functions: plant immunity suppression and cell death induction mediated by a rice cytochrome c oxidase subunit

Mol Plant Pathol. 2024 Jan;25(1):e13397. doi: 10.1111/mpp.13397. Epub 2023 Oct 30.

Abstract

Rhizoctonia solani AG-1 IA causes a necrotrophic rice disease and is a serious threat to rice production. To date, only a few effectors have been characterized in AG-1 IA. We previously identified RsIA_CtaG/Cox11 and showed that infiltration of the recombinant protein into rice leaves caused disease-like symptoms. In the present study, we further characterized the functionality of RsIA_CtaG/Cox11. RsIA_CtaG/Cox11 is an alternative transcript of cytochrome c oxidase copper chaperone Cox11 that starts from the second AUG codon, but contains a functional secretion signal peptide. RNA interference with RsIA_CtaG/Cox11 reduced the pathogenicity of AG-1 IA towards rice and Nicotiana benthamiana without affecting its fitness or mycelial morphology. Transient expression of the RsIA_CtaG/Cox11-GFP fusion protein demonstrated the localization of RsIA_CtaG/Cox11 to mitochondria. Agro-infiltration of RsIA_CtaG/Cox11 into N. benthamiana leaves inhibited cell death by BAX and INF1. In contrast to rice, agro-infiltration of RsIA_CtaG/Cox11 did not induce cell death in N. benthamiana. However, cell death was observed when it was coinfiltrated with Os_CoxVIIa, which encodes a subunit of cytochrome c oxidase. Os_CoxVIIa appeared to interact with RsIA_CtaG/Cox11. The cell death triggered by coexpression of RsIA_CtaG/Cox11 and Os_CoxVIIa is independent of the leucine-rich repeat receptor kinases BAK1/SOBIR1 and enhanced the susceptibility of N. benthamiana to AG-1 IA. Two of the three evolutionarily conserved cysteine residues at positions 25 and 126 of RsIA_CtaG/Cox11 were essential for its immunosuppressive activity, but not for cell death induction. This report suggests that RsIA_CtaG/Cox11 appears to have a dual role in immunosuppression and cell death induction during pathogenesis.

Keywords: Rhizoctonia solani AG-1 IA; cell death; effector protein; immune responses; virulence.

MeSH terms

  • Cell Death
  • Electron Transport Complex IV* / genetics
  • Electron Transport Complex IV* / metabolism
  • Mitochondria / metabolism
  • Oryza* / genetics
  • Oryza* / metabolism
  • Plant Diseases / genetics
  • Plant Immunity / genetics
  • Rhizoctonia / genetics
  • Rhizoctonia / metabolism

Substances

  • Electron Transport Complex IV

Supplementary concepts

  • Rhizoctonia solani