Negative Capacitance Field Effect Transistors based on Van der Waals 2D Materials

Small. 2023 Oct 29:e2304445. doi: 10.1002/smll.202304445. Online ahead of print.

Abstract

Steep subthreshold swing (SS) is a decisive index for low energy consumption devices. However, the SS of conventional field effect transistors (FETs) has suffered from Boltzmann Tyranny, which limits the scaling of SS to sub-60 mV dec-1 at room temperature. Ferroelectric gate stack with negative capacitance (NC) is proved to reduce the SS effectively by the amplification of the gate voltage. With the application of 2D ferroelectric materials, the NC FETs can be further improved in performance and downscaled to a smaller dimension as well. This review introduces some related concepts for in-depth understanding of NC FETs, including the NC, internal gate voltage, SS, negative drain-induced barrier lowering, negative differential resistance, single-domain state, and multi-domain state. Meanwhile, this work summarizes the recent advances of the 2D NC FETs. Moreover, the electrical characteristics of some high-performance NC FETs are expressed as well. The factors which affect the performance of the 2D NC FETs are also presented in this paper. Finally, this work gives a brief summary and outlook for the 2D NC FETs.

Keywords: 2D NC FETs; 2D ferroelectric materials; ferroelectric gate stack; negative capacitance; subthreshold swing.

Publication types

  • Review