High-fat diet induces cognitive impairment through repression of SIRT1/AMPK-mediated autophagy

Exp Neurol. 2024 Jan:371:114591. doi: 10.1016/j.expneurol.2023.114591. Epub 2023 Oct 26.

Abstract

Aims: Recent evidence suggests an association between a high-fat diet (HFD) and cognitive decline. HFD may reduce synaptic plasticity and cause tau hyperphosphorylation, but the mechanisms involved remain unclear. The purpose of this study was to explore whether Sirtuin1 (SIRT1)/AMP-activated protein kinase (AMPK) pathway was involved in this pathogenic effect in the HFD exposed mice.

Methods: C57BL/6 mice at 12 months of age were fed a standard (9% kcal fat) or high-fat (60% kcal fat) diet for 22 weeks, and Neuro-2a (N2a) cells were treated with normal culture medium or a palmitic acid (PA) medium (100uM) for 40 h. After that, cognitive function was tested by Morris water maze (MWM). The levels of proteins involved in SIRT1/AMPK pathway and autophagy were measured using western blotting and immunofluorescence. We also assessed the phosphorylation of tau protein and synapse.

Results: The mice presented impaired learning and memory abilities. We further found decreased levels of synaptophysin (Syn) and brain-derived neurotrophic factor (BDNF), increased tau46 and phosphorylated tau protein, and damaged neurons in mice after HFD or in N2a cells treated with PA medium. Moreover, HFD can also reduce the expression of SIRT1, inhibit AMPK phosphorylation, and block autophagic flow in both mice and cells. After treating the cells with the SIRT1 agonist SRT1720, SIRT1/AMPK pathway and autophagy-related proteins were partially reversed and the number of PA-induced positive cells was alleviated in senescence-associated β-galactosidase (SA-β-gal) staining.

Conclusions: HFD may inhibit the expression of SIRT1/AMPK pathway and disrupt autophagy flux, and result in tau hyperphosphorylation and synaptic dysfunction during aging, which ultimately lead to cognitive decline.

Keywords: Autophagy; Cognitive impairment; High-fat diet; SIRT1/AMPK.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • AMP-Activated Protein Kinases / metabolism
  • Animals
  • Autophagy
  • Cognitive Dysfunction* / etiology
  • Diet, High-Fat* / adverse effects
  • Mice
  • Mice, Inbred C57BL
  • Sirtuin 1 / metabolism
  • tau Proteins / pharmacology

Substances

  • AMP-Activated Protein Kinases
  • tau Proteins
  • Sirtuin 1