Adsorption and Recognition Property of Tyrosine Molecularly Imprinted Polymer Prepared via Electron Beam Irradiation

Polymers (Basel). 2023 Oct 11;15(20):4048. doi: 10.3390/polym15204048.

Abstract

To realize the selective separation of L-tyrosine (L-Tyr) and avoid the drawbacks of traditional thermal polymerization, electron beam irradiation polymerization was developed for the fabrication of L-Tyr molecularly imprinted polymers (MIPs). Firstly, L-Tyr MIPs were prepared with methacrylic acid and ethylene glycol dimethacrylate and without an initiator. Then, the influence of absorbed dosage and temperature on the adsorption capacity of L-Tyr, as well as the thermodynamic behavior, were investigated. The maximum adsorption capacity of 10.96 mg/g for MIPs was obtained with an irradiation dosage of 340 kGy under 15 °C, and the ΔH0 and ΔS0 of the adsorption process are -99.79 kJ/mol and -0.31 kJ/mol·K, respectively. In addition, the effect of adsorption time on adsorption performance was evaluated under different initial concentrations, and the kinetic behavior was fitted with four different models. Finally, the recognition property of the obtained MIPs was investigated with L-Tyr and two analogues. The obtained MIPs have an imprinting factor of 5.1 and relatively high selective coefficients of 3.9 and 3.5 against L-tryptophan and L-phenylalanine, respectively. This work not only provided an L-Tyr MIP with high adsorption capacity and selectivity but also provided an effective and clean method for the synthesis of MIPs.

Keywords: L-tyrosine; adsorption; electron beam; molecularly imprinted polymer; recognition.