Involvement of Dynamic Adjustment of ABA, Proline and Sugar Levels in Rhizomes in Effective Acclimation of Solidago gigantea to Contrasting Weather and Soil Conditions in the Country of Invasion

Int J Mol Sci. 2023 Oct 19;24(20):15368. doi: 10.3390/ijms242015368.

Abstract

Giant goldenrod (Solidago gigantea Aiton) is one of the most invasive plant species occurring in Europe. Since little is known about the molecular mechanisms contributing to its invasiveness, we examined the natural dynamics of the content of rhizome compounds, which can be crucial for plant resistance and adaptation to environmental stress. We focused on rhizomes because they are the main vector of giant goldenrod dispersion in invaded lands. Water-soluble sugars, proline, and abscisic acid (ABA) were quantified in rhizomes, as well as ABA in the rhizosphere from three different but geographically close natural locations in Poland (50°04'11.3″ N, 19°50'40.2″ E) under extreme light, thermal, and soil conditions, in early spring, late summer, and late autumn. The genetic diversity of plants between locations was checked using the random amplified polymorphic DNA (RAPD) markers. Sugar and proline content was assayed spectrophotometrically, and abscisic acid (ABA) with the ELISA immunomethod. It can be assumed that the accumulation of sugars in giant goldenrod rhizomes facilitated the process of plant adaptation to adverse environmental conditions (high temperature and/or water scarcity) caused by extreme weather in summer and autumn. The same was true for high levels of proline and ABA in summer. On the other hand, the lowering of proline and ABA in autumn did not confirm the previous assumptions about their synthesis in rhizomes during the acquisition of frost resistance by giant goldenrod. However, in the location with intensive sunlight and most extreme soil conditions, a constant amount of ABA in rhizomes was noticed as well as its exudation into the rhizosphere. This research indicates that soluble sugars, proline, and ABA alterations in rhizomes can participate in the mechanism of acclimation of S. gigantea to specific soil and meteorological conditions in the country of invasion irrespective of plant genetic variation.

Keywords: abscisic acid; goldenrod; invasive plant species; osmotic adjustment; plant acclimation; random amplified polymorphic DNA.

MeSH terms

  • Abscisic Acid*
  • Acclimatization
  • Proline
  • Random Amplified Polymorphic DNA Technique
  • Rhizome
  • Soil
  • Solidago*
  • Sugars
  • Weather

Substances

  • Abscisic Acid
  • Sugars
  • Proline
  • Soil

Grants and funding

This research was financed from the institutional funding of the Ministry of Science and Higher Education of the Republic of Poland awarded to the University of Agriculture in Kraków.