Hierarchical Porous Activated Carbon Derived from Coconut Shell for Ultrahigh-Performance Supercapacitors

Molecules. 2023 Oct 20;28(20):7187. doi: 10.3390/molecules28207187.

Abstract

In this research, we successfully produced hierarchical porous activated carbon from biowaste employing one-step KOH activation and applied as ultrahigh-performance supercapacitor electrode materials. The coconut shell-derived activated carbon (CSAC) features a hierarchical porous structure in a honeycomb-like morphology, leading to a high specific surface area (2228 m2 g-1) as well as a significant pore volume (1.07 cm3 g-1). The initial test with the CSAC electrode, conducted in a 6 M KOH loaded symmetric supercapacitor, demonstrated an ultrahigh capacitance of 367 F g-1 at a current density of 0.2 A g-1 together with 92.09% retention after 10,000 cycles at 10 A g-1. More impressively, the zinc-ion hybrid supercapacitor using CSAC as a cathode achieves a high-rate capability (153 mAh g-1 at 0.2 A g-1 and 75 mAh g-1 at 10 A g-1), high energy density (134.9 Wh kg-1 at 175 W kg-1), as well as exceptional cycling stability (93.81% capacity retention after 10,000 cycles at 10 A g-1). Such work thus illuminates a new pathway for converting biowaste-derived carbons into materials for ultrahigh-performance energy storge applications.

Keywords: KOH symmetric supercapacitors; coconut shells; hierarchical porous activated carbon; ultrahigh-performance; zinc–ion hybrid supercapacitors.