Alternative Approach to Design and Optimization of High-Q Ring Resonators for Membrane-Free Acoustic Sensors

Micromachines (Basel). 2023 Sep 29;14(10):1876. doi: 10.3390/mi14101876.

Abstract

Membrane-free acoustic sensors based on new principle and structure are becoming a research hotspot, because of many advantages, e.g., their wide bandwidth and high sensitivity. It is proposed that a membrane-free acoustic sensor employs a semi-buried optical waveguide ring resonator (SOWRR) as a sensing element. Using air as the upper cladding medium, the excited evanescent field in the air cladding medium would be modulated by acoustic wave. On this basis, the acoustic sensing model is established. Taking high Q factor and resonance depth as design criteria, the optimal design parameters are given. The optimal values of the air/SiO2: Ge/SiO2 waveguide resonator length and coupling spacing are obtained as 50 mm and 5.6 μm, respectively. The Q factor of the waveguide resonator of this size is as high as 8.33 × 106. The theoretical simulation indicates that the frequency response ranges from 1 Hz to 1.58 MHz and that the minimum detectable sound pressure is 7.48 µPa using a laser with linewidth of 1 kHz. Because of its advantages of wide bandwidth and high sensitivity, the membrane-free sensor is expected to become one of the most promising candidates for the next-generation acoustic sensor.

Keywords: acoustic sensor; high sensitivity; membrane-free; optical waveguide ring resonator; wide-frequency response.