BI-FedGNN: Federated graph neural networks framework based on Bayesian inference

Neural Netw. 2024 Jan:169:143-153. doi: 10.1016/j.neunet.2023.10.024. Epub 2023 Oct 18.

Abstract

The development of the Industrial Internet of Things (IIoT) in recent years has resulted in an increase in the amount of data generated by connected devices, creating new opportunities to enhance the quality of service for machine learning in the IIoT through data sharing. Graph neural networks (GNNs) are the most popular technique in machine learning at the moment because they can learn extremely precise node representations from graph-structured data. Due to privacy issues and legal restrictions of clients in industrial IoT, it is not permissible to directly concentrate vast real-world graph-structured datasets for training on GNNs. To resolve the aforementioned difficulties, this paper proposes a federal graph learning framework based on Bayesian inference (BI-FedGNN) that performs effectively in the presence of noisy graph structure information or missing strong relational edges. BI-FedGNN extends Bayesian Inference (BI) to the process of Federal Graph Learning (FGL), adding random samples with weights and biases to the client-side local model training process, improving the accuracy and generalization ability of FGL in the training process by rendering the graph structure data involved in GNNs training more similar to the graph structure data existing in the real world. Through extensive experimental tests, the results show that BI-FedGNN has about 0.5%-5.0% accuracy improvement over other baselines of federal graph learning. In order to expand the applicability of BI-FedGNN, experiments are carried out on heterogeneous graph datasets, and the results indicate that BI-FedGNN can also have at least 1.4% improvement in classification accuracy.

Keywords: Bayesian inference; Federated graph learning; Graph neural networks; Industrial Internet of Things.

MeSH terms

  • Bayes Theorem
  • Generalization, Psychological*
  • Humans
  • Information Dissemination*
  • Internet
  • Neural Networks, Computer