Can Nanowires Coalesce?

Nanomaterials (Basel). 2023 Oct 16;13(20):2768. doi: 10.3390/nano13202768.

Abstract

Coalescence of nanowires and other three-dimensional structures into continuous film is desirable for growing low-dislocation-density III-nitride and III-V materials on lattice-mismatched substrates; this is also interesting from a fundamental viewpoint. Here, we develop a growth model for vertical nanowires which, under rather general assumptions on the solid-like coalescence process within the Kolmogorov crystallization theory, results in a morphological diagram for the asymptotic coverage of a substrate surface. The coverage is presented as a function of two variables: the material collection efficiency on the top nanowire facet a and the normalized surface diffusion flux of adatoms from the NW sidewalls b. The full coalescence of nanowires is possible only when a=1, regardless of b. At a>1, which often holds for vapor-liquid-solid growth with a catalyst droplet, nanowires can only partly merge but never coalesce into continuous film. In vapor phase epitaxy techniques, the NWs can partly merge but never fully coalesce, while in the directional molecular beam epitaxy the NWs can fully coalesce for small enough contact angles of their droplets corresponding to a=1. The growth kinetics of nanowires and evolution of the coverage in the pre-coalescence stage is also considered. These results can be used for predicting and controlling the degree of surface coverage by nanowires and three-dimensional islands by tuning the surface density, droplet size, adatoms diffusivity, and geometry of the initial structures in the vapor-liquid-solid, selective area, or self-induced growth by different epitaxy techniques.

Keywords: coalescence; nanowires; partial merging; surface coverage.