An Admittance Control Method Based on Parameters Fuzzification for Humanoid Steering Wheel Manipulation

Biomimetics (Basel). 2023 Oct 19;8(6):495. doi: 10.3390/biomimetics8060495.

Abstract

Developing a human bionic manipulator to achieve certain humanoid behavioral skills is a rising problem. Enabling robots to operate the steering wheel to drive the vehicle is a challenging task. To address the problem, this work designs a novel 7-DOF (degree of freedom) humanoid manipulator based on the arm structure of human bionics. The 3-2-2 structural arrangement of the motors and the structural modifications at the wrist allow the manipulator to act more similar to a man. Meanwhile, to manipulate the steering wheel stably and compliantly, an admittance control approach is firstly applied for this case. Considering that the system parameters vary in configuration, we further introduce parameter fuzzification for admittance control. Designed simulations were carried out in Coppeliasim to verify the proposed control approach. As the result shows, the improved method could realize compliant force control under extreme configurations. It demonstrates that the humanoid manipulator can twist the steering wheel stably even in extreme configurations. It is the first exploration to operate a steering wheel similar to a human with a manipulator by using admittance control.

Keywords: admittance control; humanoid manipulation; parameter fuzzification; steering wheel manipulation.