Klotho Null Mutation Indirectly Leads to Age-Related Lacrimal Gland Degeneration in Mutant Mice

Biology (Basel). 2023 Oct 11;12(10):1328. doi: 10.3390/biology12101328.

Abstract

The Klotho null mutation is known to lead to accelerated aging in many organs, but its effects on tear secretion and lacrimal gland (LG) senescence have not been addressed. This study investigated whether the Klotho null mutation would lead to a dry eye status and the outcome of LG without Klotho function. The Klotho (-/-) mutant mice showed reduced LG size and tear volume on the 8th week, as compared to their littermates (+/+, +/-). Hematoxylin-Eosin and Masson's trichrome staining were performed to determine morphological changes and collagen deposition. Traits of LG aging, including acinar atrophy, thickened capsules, and more collagen depositions, were observed. Immunohistochemical detections for Klotho, α-SMA, MDA, 8-OHdG, vasoactive intestinal polypeptide (VIP), tyrosine hydroxylase (TH), MMP-2, MMP-9, and FGF-23 were performed and compared among the three genotypes (+/+, +/-, -/-) at 6 and 8 weeks of age for mechanism analyses. Unexpectedly, the Klotho protein was not detected in the LG of all the three genotypes, indicating indirect effects from the Klotho null mutation. Further analyses showed abundant MDA and 8-OHdG detected in the Klotho (-/-) LG on the 8th week, indicating elevated oxidative stress. In addition, both sympathetic and parasympathetic neural transducing activities, as represented by TH and VIP expression, respectively, and α-SMA were increased in LGs with Klotho mutations. Furthermore, MMP-2 and MMP-9 expression were elevated, with FGF-23 expression being decreased on the 8th week in the Klotho (-/-) LG. In conclusion, characteristics of age-related LG degeneration were found in the Klotho null mutant mice. These traits support the use of Klotho mutant mice as a model of age-related dry eye disease.

Keywords: Klotho mutation; acinar atrophy; age-related dry eye disease; lacrimal gland degeneration; murine model; tear volume.