Power-line interference and baseline wander elimination in ECG using VMD and EWT

Comput Methods Biomech Biomed Engin. 2023 Oct 27:1-20. doi: 10.1080/10255842.2023.2271608. Online ahead of print.

Abstract

Electrocardiogram (ECG) is a critical biomedical signal and plays an imperative role in diagnosing cardiovascular disorders. During ECG data acquisition in clinical environment, noise is frequently present. Various noises such as powerline interference (PLI) and baseline wandering (BLW) distort the ECG signal which may lead to incorrect interpretation. Consequently, substantial emphasis has been dedicated to ECG denoising for reliable diagnosis and analysis. In this study, a novel hybrid ECG denoising method based on variational mode decomposition (VMD) and the empirical wavelet transform (EWT) is presented. For effective denoising using the VMD and EWT approach, the noisy ECG signal is decomposed within narrow-band variational mode functions (VMFs). The aim is to remove noise from these narrow-band VMFs. In current approach, the centre frequency of each VMF was computed and utilized to design an adaptive wavelet filter bank using EWT. This leads to effective removal of noise components from the signal. The proposed approach was applied to ECG signals obtained from the MIT-BIH Arrhythmia database. To evaluate the denoising performance, noise sources from the MIT-BIH Noise Stress Test Database (NSTDB) are used for simulation. The assessment of denoising performance in based on two key metrics: the percentage-root-mean-square difference (PRD) and the signal-to-noise ratio (SNR). The findings of the simulation experiment demonstrate that the suggested method has lower percentage root mean square difference and higher signal-to-noise ratio as compared to existing state of the art denoising methods. An average output SNR of 24.03 was achieved, along with a 5% reduction in PRD.

Keywords: Electrocardiogram; baseline wandering ·; denoising; empirical wavelet transform; powerline interference; variational mode decomposition; variational mode function.