Endocardial HDAC3 is required for myocardial trabeculation

bioRxiv [Preprint]. 2024 Mar 4:2023.04.12.536668. doi: 10.1101/2023.04.12.536668.

Abstract

Background: Trabeculation, a key process in early heart development, is the formation of myocardial trabecular meshwork. The failure of trabeculation often leads to embryonic lethality. Support from endocardial cells, including the secretion of extracellular matrix (ECM) and growth factors is critical for trabeculation; however, it is unknown how the secretion of ECM and growth factors is initiated and regulated by endocardial cells.

Methods: Various cellular and mouse models in conjunction with biochemical and molecular tools were employed to study the role of histone deacetylase 3 (HDAC3) in the developing endocardium.

Results: We found that genetic deletion of Hdac3 in endocardial cells in mice resulted in early embryo lethality presenting as a hypotrabeculation cardiac phenotype. Single cell RNA sequencing identified several ECM components including collagens that were significantly downregulated in Hdac3 knockout (KO) endocardial cells. When cultured with supernatant from Hdac3 KO mouse cardiac endothelial cells (MCECs), wild-type mouse embryonic cardiomyocytes showed decreased proliferation, suggesting that growth signaling from Hdac3 KO MCECs is disrupted. Subsequent transcriptomic analysis revealed that transforming growth factor β3 (TGFβ3) was significantly downregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Mechanistically, we identified that microRNA (miR)-129-5p was significantly upregulated in Hdac3 KO MCECs and Hdac3 cardiac endothelial KO hearts. Overexpression of miR-129-5p repressed Tgfβ3 expression in wild-type MCECs, whereas knockdown of miR-129-5p restored Tgfβ3 expression in Hdac3 KO MCECs.

Conclusion: Our findings reveal a critical signaling pathway in which endocardial HDAC3 promotes trabecular myocardium growth by stimulating TGFβ signaling through repressing miR-129-5p, providing novel insights into the etiology of congenital heart disease and conceptual strategies to promote myocardial regeneration.

Publication types

  • Preprint