Optimizing the Fermentation Conditions of Cudrania tricuspidata Fruit Using Bacillus amyloliquefaciens for Anti-Inflammatory Activity and GC-MS-Based Volatile Component Characteristics

Evid Based Complement Alternat Med. 2023 Oct 18:2023:5042416. doi: 10.1155/2023/5042416. eCollection 2023.

Abstract

The aim of this study is to optimize the performance conditions used for maximum anti-inflammatory activity and to clarify in vitroanti-inflammatory properties of fermented C. tricuspidata fruit. Based on the single-factor experiment and Box-Behnken design, the optimized fermentation conditions of C. tricuspidata fruit for maximum anti-inflammatory activity were 3.8 d fermentation period, 8.4% (v/w) inoculation concentration, and 29.2°C fermentation temperature. Under optimal conditions, anti-inflammatory activity-based nitric oxide of fermented C. tricuspidata fruit reached 93.9%. Moreover, this study provides a theoretical basis and experimental data containing β-hexosaminidase and reactive oxygen species for the medical use and industrialization of C. tricuspidata fruit fermentation. Interestingly, the results of GC-MS analysis confirmed that fermented C. tricuspidata fruits detect volatile components different from unfermented C. tricuspidata fruits. We suggested that this volatile component may have been involved in the anti-inflammatory reaction, but scientific verification of this is needed later. Therefore, an in-depth study of volatile components detected from fermented C. tricuspidata fruits will need to be conducted later.