Electric field tuning of a nickel zinc ferrite resonator by non-linear magnetoelectric effects

Sci Rep. 2023 Oct 26;13(1):18346. doi: 10.1038/s41598-023-45530-4.

Abstract

The nature of nonlinear magnetoelectric (NLME) effect has been investigated at room-temperature in a single-crystal Zn substituted nickel ferrite. Tuning of the frequency of magnetostatic surface wave (MSSW) modes under an applied pulsed DC electric field/current has been utilized to probe the effect. The frequencies of the modes at 8-20 GHz were found to decrease by ~ 400 MHz for an applied DC power P of ~ 100 mW and the frequency shift was the same for all of the MSSW modes and linearly proportional to P. A model is proposed for the effect and the NLME phenomenon was interpreted in terms of a reduction in the saturation magnetization due to the DC current. The decrease of magnetization with applied electric power, estimated from data on mode frequency versus P, was - 2.50 G/mW. The frequency tuning efficiency of the MSSW modes due to NLME effects in the ferrite resonator was found to be 4.1 MHz/mW which is an order of magnitude higher than the shift reported for M-type strontium and barium hexaferrite resonators investigated earlier. The spinel ferrite resonator discussed here has the potential for miniature, electric field tunable, planar microwave devices for the 8-20 GHz frequency range.