A Synthetic Approach for Oxadiazole-Decorated Azobenzene Photoswitches

Chempluschem. 2024 Feb;89(2):e202300504. doi: 10.1002/cplu.202300504. Epub 2023 Nov 13.

Abstract

This work reports the design and synthesis of novel oxadiazole-decorated azobenzenes, structural analysis of the resulting compounds and behavior under light irradiation. The synthetic strategy involved constructing amino functionalized heterocyclic key intermediates which were used either to yield electrophilic diazonium salts able to react with phenol moieties or as nucleophilic partners in Bayer-Mills reaction with nitroso-substituted derivatives. The amino-derived oxadiazole intermediates were investigated by absorption and emission spectroscopy providing blue and green emitted light. The target oxadiazole-decorated azobenzenes were structurally characterized, including solid-state structures, and subsequently used in irradiation experiments in order to take advantage of the azo group known to provide photoswitching abilities. We noticed quenching of the emissive properties in presence of the azo group; however, all compounds were very stable to repeated cycles of light irradiation. In addition, according to structural diversification we could obtain half-lives of the meta stable isomers within hours to hundreds of hours range. The experimental results were very well correlated with DFT calculations.

Keywords: 1,3,4-oxadiazole; azo compounds; azobenzene; heterocycles; photoswitch.