Estimation of the relative biological effectiveness (RBE) of the Lu-DOTA-iPSMA177<!--Q1:CorrectlyacknowledgingtheprimaryfundersandgrantIDsofyourresearchisimportanttoensurecompliancewithfunderpolicies.Pleasemakesurethatfundersarementionedaccordingly.--> radiopharmaceutical

Appl Radiat Isot. 2023 Dec:202:111065. doi: 10.1016/j.apradiso.2023.111065. Epub 2023 Oct 6.

Abstract

Relative biological effectiveness is a radiobiological parameter relevant in radiotherapy planning and useful in evaluating the physiological impact of radiation in different tissues. Targeted radionuclide therapy allows the selective and specific deposition of higher radiation doses in a noninvasive way and without collateral effects through the administration of radiopharmaceuticals. Lu-DOTA-177(hydrazinylnicotinoyl-Lys-(Nal)-NH-CO-NH-Glu) also called Lu-iPSMA177 is a third generation radiopharmaceutical composed by a peptide that recognizes the prostate-specific membrane antigen (PSMA), a membrane protein overexpressed in several types of cancer and that mediates the radiopharmaceutical's recognition of cancer cells. The present study reports radiobiological parameters of Lu-iPSMA177 and demonstrates the superiority of targeted radiopharmaceuticals over external radiotherapy treatment options in terms of their relative biological effectiveness. The relative biological effectiveness value of 1.020±0.003 for the LINAC, estimated by fitting the linear-quadratic model equation to the resulting survival curves, was like those of 1.25±0.04,1.060±0.005and1.00±0.04 obtained by an alternative method in relation to the mean lethal doses at 90, 80 or 60 survival percent respectively. While the relative biological effectiveness values of 5.65±0.13,4.72±0.27and2.87±0.19 estimated for Lu-iPSMA177 were significantly higher than those for the LINAC. The results confirm that the biological effect produced by the deposition of a radiation absorbed dose delivered by the LINAC can be induced with a quarter of that dose using Lu-iPSMA177 due to the energy distribution, dose-rate and energy fluence.

Keywords: (177)Lu-iPSMA; Dose rate; LNCaP; Radiopharmaceuticals; Relative biological effectiveness; Survival fraction.

MeSH terms

  • Humans
  • Lutetium / therapeutic use
  • Male
  • Radioisotopes* / therapeutic use
  • Radiopharmaceuticals* / therapeutic use
  • Relative Biological Effectiveness

Substances

  • Radiopharmaceuticals
  • 1,4,7,10-tetraazacyclododecane- 1,4,7,10-tetraacetic acid
  • Lutetium-177
  • Radioisotopes
  • Lutetium