Amorphization-Induced Cation Exchange in Indium Oxide Nanosheets for CO2-to-Ethanol Conversion

Nano Lett. 2023 Nov 8;23(21):10004-10012. doi: 10.1021/acs.nanolett.3c03178. Epub 2023 Oct 25.

Abstract

Cation exchange (CE) in metal oxides under mild conditions remains an imperative yet challenging goal to tailor their composition and enable practical applications. Herein, we first develop an amorphization-induced strategy to achieve room-temperature CE for universally synthesizing single-atom doped In2O3 nanosheets (NSs). Density functional theory (DFT) calculations elucidate that the abundant coordination-unsaturated sites present in a-In2O3 NSs are instrumental in surmounting the energy barriers of CE reactions. Empirically, a-In2O3 NSs as the host materials successfully undergo exchange with unary cations (Cu2+, Co2+, Mn2+, Ni2+), binary cations (Co2+Mn2+, Co2+Ni2+, Mn2+Ni2+), and ternary cations (Co2+Mn2+Ni2+). Impressively, high-loading single-atom doped (over 10 atom %) In2O3 NSs were obtained. Additionally, Cu/a-In2O3 NSs exhibit an excellent ethanol yield (798.7 μmol g-1 h-1) with a high selectivity of 99.5% for the CO2 photoreduction. This work offers a new approach to induce CE reactions in metal oxides under mild conditions and constructs scalable single-atom doped catalysts for critical applications.

Keywords: CO2 photoreduction; amorphous structure; cation exchange; ethanol formation; metal oxides; single-atom doped catalysts.