Crucial Roles of the High-Osmolarity Glycerol Pathway in the Antifungal Activity of Isothiocyanates against Cochliobolus heterostrophus

J Agric Food Chem. 2023 Oct 25;71(42):15466-15475. doi: 10.1021/acs.jafc.3c04853. Epub 2023 Oct 16.

Abstract

Isothiocyanates (ITCs) that are found in Brassicaceae exhibited obvious antifungal activity against Cochliobolus heterostrophus, which is the causal agent of southern corn leaf blight. However, the underlying antifungal mechanism of allyl-ITCs (A-ITCs) against C. heterostrophus remains largely unknown. Here, we used transcriptomic analysis to find that the high osmolarity pathway was upregulated significantly when treated with A-ITCs. To investigate the roles of the high osmolarity pathway in adaption to A-ITCs, we constructed Δssk2, Δpbs2, and Δhog1 mutant strains. Deletion of three genes (ChSSK2, ChPBS2, and ChHOG1) involved in the high osmolarity pathway resulted in significantly increased sensitivity of C. heterostrophus to ITCs. In addition, the phosphorylation level of ChHog1 was induced by A-ITC and was dependent on the presence of ChSsk2 and ChPbs2. Moreover, Δssk2, Δpbs2, and Δhog1 mutants exhibited a dramatically decreased virulence on maize leaves. Our findings demonstrated that the high osmolarity pathway played a positive role in ITC tolerance and virulence, which may provide novel insights into developing ITCs as a new fungicide against C. heterostrophus.

Keywords: Cochliobolus heterostrophus; high osmolarity glycerol (HOG) pathway; isothiocyanates; transcriptomic.

MeSH terms

  • Antifungal Agents* / pharmacology
  • Ascomycota* / genetics
  • Glycerol
  • Isothiocyanates
  • Osmolar Concentration

Substances

  • Antifungal Agents
  • Glycerol
  • Isothiocyanates

Supplementary concepts

  • Bipolaris maydis