Assessment of the synthesis method of Fe3O4 nanocatalysts and its effectiveness in viscosity reduction and heavy oil upgrading

Sci Rep. 2023 Oct 24;13(1):18151. doi: 10.1038/s41598-023-41441-6.

Abstract

In this research, Fe3O4 nanocatalysts were synthesized systematically microwave-assisted. The effectiveness of the synthesized nanocatalysts in reducing viscosity and upgrading heavy oil was evaluated. The nanocatalysts were investigated for their magnetic and electromagnetic properties. The impact of microwave radiation's time and power on the size and purity of nanocatalysts was investigated. The purities in the crystal network of Fe3O4 nanocatalysts expanded as a result of reducing microwave radiation time and power due to less heat production. Increased temperature leads to dope NH4Cl into the Fe3O4 nanocatalysts crystal network. At: 1 min and power of 400 watts the most satisfactory results in the size and purity of nanocatalysts. The electromagnetic properties, size, and effectiveness of the synthesized Fe3O4 nanocatalysts have been examined to determine the effect of the synthesis method. The performance of Fe3O4 nanocatalysts synthesized by co-precipitation and microwave-assisted viscosity reduction and heavy oil upgrading was evaluated and compared. The crystallite size of the Fe3O4 nanocatalysts synthesized by microwave-assisted was smaller than that synthesized using co-precipitation. Fe3O4 nanocatalysts synthesized by microwave-assisted and the co-precipitation method decreased viscosity by 28% and 23%, respectively. Moreover, Fe3O4 nanocatalysts synthesized by microwave-assisted reduced the sulfoxide index and aromatic index considerably more than the co-precipitation synthesized Fe3O4 (90% against. 48% and 13% vs. 7%, respectively).