Top-Down Machine Learning of Coarse-Grained Protein Force Fields

J Chem Theory Comput. 2023 Nov 14;19(21):7518-7526. doi: 10.1021/acs.jctc.3c00638. Epub 2023 Oct 24.

Abstract

Developing accurate and efficient coarse-grained representations of proteins is crucial for understanding their folding, function, and interactions over extended time scales. Our methodology involves simulating proteins with molecular dynamics and utilizing the resulting trajectories to train a neural network potential through differentiable trajectory reweighting. Remarkably, this method requires only the native conformation of proteins, eliminating the need for labeled data derived from extensive simulations or memory-intensive end-to-end differentiable simulations. Once trained, the model can be employed to run parallel molecular dynamics simulations and sample folding events for proteins both within and beyond the training distribution, showcasing its extrapolation capabilities. By applying Markov state models, native-like conformations of the simulated proteins can be predicted from the coarse-grained simulations. Owing to its theoretical transferability and ability to use solely experimental static structures as training data, we anticipate that this approach will prove advantageous for developing new protein force fields and further advancing the study of protein dynamics, folding, and interactions.

MeSH terms

  • Machine Learning
  • Molecular Dynamics Simulation*
  • Protein Conformation
  • Protein Folding
  • Proteins* / chemistry

Substances

  • Proteins