Lifting, Loading, and Buckling in Conical Shells

Phys Rev Lett. 2023 Oct 6;131(14):148202. doi: 10.1103/PhysRevLett.131.148202.

Abstract

Liquid crystal elastomer films that morph into cones are strikingly capable lifters. Thus motivated, we combine theory, numerics, and experiments to reexamine the load-bearing capacity of conical shells. We show that a cone squashed between frictionless surfaces buckles at a smaller load, even in scaling, than the classical Seide-Koiter result. Such buckling begins in a region of greatly amplified azimuthal compression generated in an outer boundary layer with oscillatory bend. Experimentally and numerically, buckling then grows subcritically over the full cone. We derive a new thin-limit formula for the critical load, ∝t^{5/2}, and validate it numerically. We also investigate deep postbuckling, finding further instabilities producing intricate states with multiple Pogorelov-type curved ridges arranged in concentric circles or Archimedean spirals. Finally, we investigate the forces exerted by such states, which limit lifting performance in active cones.