Gate-Defined Topological Josephson Junctions in Bernal Bilayer Graphene

Phys Rev Lett. 2023 Oct 6;131(14):146601. doi: 10.1103/PhysRevLett.131.146601.

Abstract

Recent experiments on Bernal bilayer graphene (BLG) deposited on monolayer WSe_{2} revealed robust, ultraclean superconductivity coexisting with sizable induced spin-orbit coupling. Here, we propose BLG/WSe_{2} as a platform to engineer gate-defined planar topological Josephson junctions, where the normal and superconducting regions descend from a common material. More precisely, we show that if superconductivity in BLG/WSe_{2} is gapped and emerges from a parent state with intervalley coherence, then Majorana zero-energy modes can form in the barrier region upon applying weak in-plane magnetic fields. Our results spotlight a potential pathway for "internally engineered" topological superconductivity that minimizes detrimental disorder and orbital-magnetic-field effects.