Curvature dependent onset of quantum tunneling in subnanometer gaps

Opt Express. 2023 Oct 9;31(21):35387-35395. doi: 10.1364/OE.500611.

Abstract

The quantum tunneling in subnanometer gap sizes in gold dimers is studied in order to account for the dependency of the onset of quantum tunneling on the dimer's radius and accordingly the gap wall's curvature, realized in experiments. Several nanodimers both nanowires and nanospheres with various radii and gap sizes are modelled and simulated based on the quantum corrected model, determining the onset of the quantum tunneling. Results show that the onset of quantum tunneling is both dependent on the gap size as well as on the dimer's radius. As larger dimers result in larger effective conductivity volumes, the influence of the quantum tunneling begins in larger gap sizes in larger dimers.