Thermal degradation and flame spread characteristics of epoxy polymer composites incorporating mycelium

Sci Rep. 2023 Oct 19;13(1):17812. doi: 10.1038/s41598-023-45097-0.

Abstract

Although bioderived flame retardants are environmentally sustainable and less toxic, their impact on the thermal stability and flammability of polymers remains poorly understood. In this study, we assessed the influence of mycelium on the thermal stability and flame spread characteristics of epoxy through thermogravimetric analysis, Fourier transform infrared spectroscopy, the UL94 flammability test, and scanning electron microscopy. We observed a decrease in the maximum mass loss rate temperature when mycelium was incorporated into epoxy, indicating an earlier onset of thermal degradation. The inclusion of mycelium increased char yields above 418 °C due to mycelium's inherent char-forming ability. However, mycelium did not alter the thermal degradation pathway of epoxy. Furthermore, according to the UL94 test results, the incorporation of mycelium reduced the flame spread rate compared to that of neat epoxy. These findings contribute to our understanding of the interaction between bioderived flame retardants and polymers paving the way for the development of more sustainable fireproofing materials.