Proposed Missions to Collect Samples for Analyzing Evidence of Life in the Venusian Atmosphere

Astrobiology. 2024 Apr;24(4):397-406. doi: 10.1089/ast.2022.0134. Epub 2023 Oct 18.

Abstract

The recent and still controversial claim of phosphine detection in the venusian atmosphere has reignited consideration of whether microbial life might reside in its cloud layers. If microbial life were to exist within Venus' cloud deck, these microorganisms would have to be multi-extremophiles enclosed within the cloud aerosol particles. The most straightforward approach for resolving the question of their existence is to obtain samples of the cloud particles and analyze their interior. While developing technology has made sophisticated in situ analysis possible, more detailed information could be obtained by examining samples with instrumentation in dedicated ground-based facilities. Ultimately, therefore, Venus Cloud-level Sample Return Missions will likely be required to resolve the question of whether living organisms exist in the clouds of Venus. Two multiphase mission concepts are currently under development for combining in situ analyses with a sample return component. The Venus Life Finder architecture proposes collection of cloud particles in a compartment suspended from a balloon that floats for weeks at the desired altitude, while the Novel solUtion for Venus explOration and Lunar Exploitation (NUVOLE) concept involves a glider that cruises within the cloud deck for 1200 km collecting cloud aerosol particles through the key regions of interest. Both architectures propose a rocket-driven ascent with the acquired samples transported to a high venusian orbit as a prelude to returning to Earth or the Moon. Both future conceptual missions with their combined phases will contribute valuable information relative to the habitability of the clouds at Venus, but their fulfillment is decades away. We suggest that, in the meantime, a simplification of a glider cloud-level sample collection scenario could be accomplished in a shorter development time at a lower cost. Even if the cloud particles are not organic and show no evidence of living organisms, they would reveal critical insights about the natural history and evolution of Venus.

Keywords: Aerial Biosphere; Clouds; Habitability; Life; Sample Return; Venus.

MeSH terms

  • Aerosols
  • Atmosphere* / analysis
  • Earth, Planet
  • Moon
  • Venus*

Substances

  • Aerosols