Evaluation of sorbent amendments used with stormwater management practices to remove contaminants: Impacts of rainfall intensity and antecedent dry periods

Sci Total Environ. 2024 Jan 1:906:167766. doi: 10.1016/j.scitotenv.2023.167766. Epub 2023 Oct 15.

Abstract

For a comprehensive evaluation of the suitability and efficiency of soil amendments in bioretention systems, it is crucial to investigate the capability of amendments for simultaneously serving three important functions under intermittent and variable flow conditions: removing a wide range of contaminants, supporting plant health, and maintaining media infiltration rate. However, most studies have not considered these important factors and conditions simultaneously, which may overestimate or underestimate the bioretention performance. In this study, a long-term vegetated column study was conducted to investigate the ability of various sorbent amendments- coconut coir fiber (CCF), blast furnace slag (BFS), and waste tire crumb rubber (WTCR) -for removal of metals, nutrients, and polycyclic aromatic hydrocarbons (PAHs) from stormwater. The experiments were performed under intermittent flow conditions considering different runoff intensities and antecedent dry periods (ADP). The long-term effect of bioretention usage on plant health and media infiltration rate was also investigated. All amended and unamended columns were able to remove >99 % of influent metals, except Cu, over the 7-month experiment period with different rain intensities and dry periods; modest effluent Cu concentrations occurred with higher rainfall. The performance of different media for removing PAHs such as naphthalene and acenaphthylene varied with the rain intensity. The BFS-amended media had high phosphate removal capacity (>90 %) under tested conditions. In all columns, nitrate removal was notably affected by changes in stormwater intensity and ADP, with high nitrate removal during heavy rainfall. Over the entire experiment, all media had good infiltration rate within the locally acceptable range (1-25 cm/h). The high iron and aluminum contents of BFS adversely affected the plant health in BFS-amended media. Overall, this study identifies the opportunities and challenges associated with the usage of bioretention amendments, and improves awareness among bioretention designers to consider seasonal effect on the performance of bioretention systems.

Keywords: Bioretention practices; Climate change; Metals removal; Nutrients removal; PAHs removal; Vegetation health.

MeSH terms

  • Metals
  • Nitrates*
  • Organic Chemicals
  • Rain
  • Soil*

Substances

  • Nitrates
  • Soil
  • Organic Chemicals
  • Metals