Ruthenium-Based Photoactivated Chemotherapy

J Am Chem Soc. 2023 Nov 1;145(43):23397-23415. doi: 10.1021/jacs.3c01135. Epub 2023 Oct 17.

Abstract

Ruthenium(II) polypyridyl complexes form a vast family of molecules characterized by their finely tuned photochemical and photophysical properties. Their ability to undergo excited-state deactivation via photosubstitution reactions makes them quite unique in inorganic photochemistry. As a consequence, they have been used, in general, for building dynamic molecular systems responsive to light but, more particularly, in the field of oncology, as prodrugs for a new cancer treatment modality called photoactivated chemotherapy (PACT). Indeed, the ability of a coordination bond to be selectively broken under visible light irradiation offers fascinating perspectives in oncology: it is possible to make poorly toxic agents in the dark that become activated toward cancer cell killing by simple visible light irradiation of the compound inside a tumor. In this Perspective, we review the most important concepts behind the PACT idea, the relationship between ruthenium compounds used for PACT and those used for a related phototherapeutic approach called photodynamic therapy (PDT), and we discuss important questions about real-life applications of PACT in the clinic. We conclude this Perspective with important challenges in the field and an outlook.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Coordination Complexes* / chemistry
  • Coordination Complexes* / pharmacology
  • Coordination Complexes* / therapeutic use
  • Humans
  • Light
  • Neoplasms* / drug therapy
  • Photochemotherapy*
  • Photosensitizing Agents / chemistry
  • Photosensitizing Agents / pharmacology
  • Photosensitizing Agents / therapeutic use
  • Ruthenium* / chemistry

Substances

  • Ruthenium
  • Coordination Complexes
  • Antineoplastic Agents
  • Photosensitizing Agents