Experimental Evidence and Mechanistic Description of the Phenolic H-Transfer to the Cu2O2 Active Site of oxy-Tyrosinase

J Am Chem Soc. 2023 Oct 25;145(42):22866-22870. doi: 10.1021/jacs.3c07450. Epub 2023 Oct 16.

Abstract

Tyrosinase is a ubiquitous coupled binuclear copper enzyme that activates O2 toward the regioselective monooxygenation of monophenols to catechols via a mechanism that remains only partially defined. Here, we present new mechanistic insights into the initial steps of this monooxygenation reaction by employing a pre-steady-state, stopped-flow kinetics approach that allows for the direct measurement of the monooxygenation rates for a series of para-substituted monophenols by oxy-tyrosinase. The obtained biphasic Hammett plot and the associated solvent kinetic isotope effect values provide direct evidence for an initial H-transfer from the protonated phenolic substrate to the Cu2O2 core of oxy-tyrosinase. The correlation of these experimental results to quantum mechanics/molecular mechanics calculations provides a detailed mechanistic description of this H-transfer step. These new mechanistic insights revise and expand our fundamental understanding of Cu2O2 active sites in biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Catalytic Domain
  • Catechols / chemistry
  • Copper* / chemistry
  • Kinetics
  • Monophenol Monooxygenase* / chemistry
  • Phenols / chemistry

Substances

  • Monophenol Monooxygenase
  • Copper
  • Phenols
  • Catechols