Building a Flexible and Highly Ionic Conductive Solid Electrolyte Interphase on the Surface of Si@C Anodes by Binary Electrolyte Additives

ACS Appl Mater Interfaces. 2023 Oct 25;15(42):49727-49738. doi: 10.1021/acsami.3c08704. Epub 2023 Oct 16.

Abstract

Si@C as a high specific capacity anode material for lithium batteries (LIBs) has attracted a lot of attention. However, the severe volume change during lithium de-embedding causes repeated rupture/reconstruction of the solid electrolyte interphase (SEI), resulting in poor cycling stability of the Si-based battery system and thus hindering its application in commercial batteries. Using electrolyte additives to form an excellent SEI is considered to be a cost-effective method to meet this challenge. Here, the classical film-forming additive vinyl carbonate (VC), and the newly emerging lithium salt additive lithium difluorophosphate (LiDFP), are chosen as synergistic additives to improve the electrode-electrolyte interface properties. Final results show that the VC additive generates flexible polycarbonate components at the electrode/electrolyte interface, preventing the fragmentation of Si particles. However, the organic components show high impedance, inhibiting the fast transport of Li+. This defect can be supplemented from the decomposition substances of the LiDFP additive. The derived inorganic products, such as LiF and Li3PO4, can strengthen the reaction kinetics of the electrode, reduce the interfacial impedance, and promote the Li+ transport. Thus, the synergistic effect of VC and LiDFP additives builds an effective SEI with good flexibility and high ionic conductivity and then significantly improves the cycling and rate stability of Si@C anodes. The experimental results show that the utilization of LiDFP and VC additives to modify the Si@C anode interface enhances the capacity retention of the Si@C/Li half-cell after 100 cycles from 68.2% to 85.1%. Besides, the possible mechanism of action between VC and LiDFP is proposed by using the spectral characterization technique and density functional theory (DFT) calculations. This research opens up a new possibility for improvement of SEI, and provides a simple way to achieve high-performance Si-based LIBs.

Keywords: Si@C anode; electrolyte additive; lithium difluorophosphate; solid electrolyte interphase; synergistic effect; vinyl carbonate.