Library-Based Raman Spectral Identification Using Multi-Input Hybrid ResNet

ACS Omega. 2023 Sep 27;8(40):37482-37489. doi: 10.1021/acsomega.3c05780. eCollection 2023 Oct 10.

Abstract

Raman spectroscopy is widely used for its exceptional identification capabilities in various fields. Traditional methods for target identification using Raman spectroscopy rely on signal correlation with moving windows, requiring data preprocessing that can significantly impact identification performance. In recent years, deep-learning approaches have been proposed to leverage data augmentation techniques, such as baseline and additive noise addition, in order to overcome data scarcity. However, these deep-learning methods are limited to the spectra encountered during training and struggle to handle unseen spectra. To address these limitations, we propose a multi-input hybrid deep-learning model trained with simulated spectral data. By employing simulated spectra, our method tackles the challenges of data scarcity and the handling of unseen spectra encountered in traditional and deep-learning methods. Experimental results demonstrate that our proposed method achieves outstanding identification performance and effectively handles spectra obtained from different Raman spectroscopy systems.