Using salamanders as model taxa to understand vertebrate feeding constraints during the late Devonian water-to-land transition

Philos Trans R Soc Lond B Biol Sci. 2023 Dec 4;378(1891):20220541. doi: 10.1098/rstb.2022.0541. Epub 2023 Oct 16.

Abstract

The vertebrate water-to-land transition and the rise of tetrapods brought about fundamental changes for the groups undergoing these evolutionary changes (i.e. stem and early tetrapods). These groups were forced to adapt to new conditions, including the distinct physical properties of water and air, requiring fundamental changes in anatomy. Nutrition (or feeding) was one of the prime physiological processes these vertebrates had to successfully adjust to change from aquatic to terrestrial life. The basal gnathostome feeding mode involves either jaw prehension or using water flows to aid in ingestion, transportation and food orientation. Meanwhile, processing was limited primarily to simple chewing bites. However, given their comparatively massive and relatively inflexible hyobranchial system (compared to the more muscular tongue of many tetrapods), it remains fraught with speculation how stem and early tetrapods managed to feed in both media. Here, we explore ontogenetic water-to-land transitions of salamanders as functional analogues to model potential changes in the feeding behaviour of stem and early tetrapods. Our data suggest two scenarios for terrestrial feeding in stem and early tetrapods as well as the presence of complex chewing behaviours, including excursions of the jaw in more than one dimension during early developmental stages. Our results demonstrate that terrestrial feeding may have been possible before flexible tongues evolved. This article is part of the theme issue 'Food processing and nutritional assimilation in animals'.

Keywords: amphibians; early tetrapods; heterochrony; intraoral food processing; nutrition; vertebrate land invasion.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biological Evolution
  • Urodela*
  • Vertebrates / physiology
  • Water*

Substances

  • Water

Associated data

  • figshare/10.6084/m9.figshare.c.6825685