Interface engineering of Ruddlesden-Popper perovskite/CeO2/carbon heterojunction for rechargeable zinc-air batteries

J Colloid Interface Sci. 2024 Jan;653(Pt B):1775-1784. doi: 10.1016/j.jcis.2023.09.138. Epub 2023 Sep 23.

Abstract

The development of noble metal-based bifunctional electrocatalysts is the key to driving the sluggish oxygen reduction/evolution reaction (ORR/OER) for rechargeable zinc-air battery applications. There is an urgent need to design and construct robust and cost-efficient bifunctional electrocatalysts. Herein, an interface engineering strategy of Ruddlesden-Popper (RP) perovskite/CeO2/carbon heterojunction with core-shell nanostructures is described. Ce-based metal-organic framework derived CeO2-C nanosheets are decorated on the surface of RP type perovskite Pr3Sr(Ni0.5Co0.5)3O10-δ (PSNC) nanofibers. Benefiting from the favorable conductivity, abundant oxygen vacancies and strong interfacial coupling, the hierarchical CeO2-C/PSNC electrode delivers a half-wave potential of 0.78 V (ORR), and an OER overpotential of 370 mV at 10 mA cm-2, respectively. A liquid rechargeable zinc-air battery (ZAB) assembled with CeO2-C/PSNC electrocatalysts as the air cathode exhibits a peak power density of 161 mW cm-2 and a long-term cycling life over 219 h. In addition, the CeO2-C/PSNC-based all-solid-state cable-type ZAB provides a high open-circuit voltage (∼1.44 V), good flexibility and durability. Our study opens a new insight into the design of efficient electrocatalysts for rechargeable ZABs by constructing hierarchical heterojunctions.

Keywords: Bifunctional electrocatalyst; Heterojunction; Hierarchical structure; Ruddlesden–Popper perovskite; Zinc-air batteries.