Exploring natural compound, Panicutine as leucine-rich repeat kinase 2 inhibitor against Parkinson's disease: a structure-guided approach

J Biomol Struct Dyn. 2023 Oct 14:1-10. doi: 10.1080/07391102.2023.2268183. Online ahead of print.

Abstract

Leucine-rich repeat kinase 2 (LRRK2) is a promising drug target for the therapeutic management of Parkinson's disease (PD) and other neurodegenerative disorders. LRRK2 inhibitors have the potential to modulate neuroinflammation, reduce alpha-synuclein aggregation and improve motor symptoms in PD patients. Although LRRK2 inhibitors are still in the early stages of clinical development, the identification of potent and selective inhibitors through structure-guided approaches provides a promising avenue for the development of effective therapies for PD and other neurodegenerative disorders. In this study, natural compounds from the IMPPAT database were screened using a state-of-the-art computational virtual screening approach to identify potential inhibitors of LRRK2. We carried out a docking screening on a library of natural compounds and identified a few compounds with strong binding affinity, docking score and specificity towards LRRK2 as the top hits. These hits were then subjected to further analysis based on multiple parameters for the Pan-assay interference compounds and their physicochemical and pharmacokinetics evaluation followed by a detailed interaction analysis. After careful evaluation, one natural compound, Panicutine, was identified as a promising candidate for LRRK2 due to its significant affinity and specificity towards the LRRK2 binding pocket. Additionally, it exhibited drug-like properties with blood-brain barrier permeability as determined by ADMET properties. To gain a deeper understanding of the stability and conformational changes of the LRRK2-ligand complex, MD simulations were conducted for 100 nanoseconds under explicit solvent conditions followed by principal component analysis and free energy dynamics. The simulation results demonstrated that the LRRK2-Panicutine complex remained stable throughout the simulation trajectories. Based on these findings, it is concluded that Panicutine has the potential to act as a LRRK2 inhibitor against PD and other neurodegenerative disorders.Communicated by Ramaswamy H. Sarma.

Keywords: Leucine-rich repeat kinase 2; Panicutine; Parkinson’s disease; natural compounds; neuroinflammation; virtual screening.