Using Schlieren Imaging and a Radar Acoustic Sounding System for the Detection of Close-in Air Turbulence

Sensors (Basel). 2023 Oct 5;23(19):8255. doi: 10.3390/s23198255.

Abstract

This paper presents a novel sensor for the detection and characterization of regions of air turbulence. As part of the ground truth process, it consists of a combined Schlieren imager and a Radar Acoustic Sounding System (RASS) to produce dual-modality "images" of air movement within the measurement volume. The ultrasound-modulated Schlieren imager consists of a strobed point light source, parabolic mirror, light block, and camera, which are controlled by two laptops. It provides a fine-scale projection of the acoustic pulse-modulated air turbulence through the measurement volume. The narrow beam 40 kHz/17 GHz RASS produces spectra based on Bragg-enhanced Doppler radar reflections from the acoustic pulse as it travels. Tests using artificially generated air vortices showed some disruption of the Schlieren image and of the RASS spectrogram. This should allow the higher-resolution Schlieren images to identify the turbulence mechanisms that are disrupting the RASS spectra. The objective of this combined sensor is to have the Schlieren component inform the interpretation of RASS spectra to allow the latter to be used as a stand-alone sensor on a UAV.

Keywords: RASS; imaging; radio acoustic sounding; ultrasound; ultrasound-modulated Schlieren imaging.

Grants and funding

This research received no external funding.