Selective Recovery of Polyphenols from Discarded Blueberries (Vaccinium corymbosum L.) Using Hot Pressurized Liquid Extraction Combined with Isopropanol as an Environmentally Friendly Solvent

Foods. 2023 Oct 8;12(19):3694. doi: 10.3390/foods12193694.

Abstract

The use of water-ethanol mixtures in hot pressurized liquid extraction (HPLE) to recover phenolic compounds from agro-industrial waste has been successfully investigated. However, the unresolved challenge of reducing solvent costs associated with the process hinders the scaling of this eco-friendly technology. This study evaluated the use of isopropanol as an alternative, lower-cost solvent for recovering polyphenols from discarded blueberries through the HPLE process. HPLE was carried out using water-isopropanol mixtures (0, 15 and 30%) at 70, 100, and 130 °C. The total polyphenol content (TPC), antioxidant capacity (DPPH and ORAC), glucose and fructose contents, and polyphenol profile of the extracts were determined. HPLE extracts obtained using high isopropanol concentrations (30%) and high temperatures (130 °C) presented the highest TPC (13.57 mg GAE/gdw) and antioxidant capacity (IC50: 9.97 mg/mL, ORAC: 246.47 µmol ET/gdw). Moreover, the use of 30% water-isopropanol resulted in higher yields of polyphenols and removal of reducing sugars compared to atmospheric extraction with water-acetone (60%). The polyphenolic profiles of the extracts showed that flavanols and phenolic acids were more soluble at high concentrations of isopropanol (30%). Contrarily, flavonols and stilbenes were better recovered with 15% isopropanol and pure water. Therefore, isopropanol could be a promising solvent for the selective recovery of different bioactive compounds from discarded blueberries and other agro-industrial residues.

Keywords: antioxidant capacity; discarded blueberries; isopropanol; polyphenols; subcritical conditions.

Grants and funding

This research received no external funding.