The Stability, Rheological Properties and Interfacial Properties of Oil-in-Water (O/W) Emulsions Prepared from Dielectric Barrier Discharge (DBD) Cold Plasma-Treated Chickpea Protein Isolate and Myofibrillar Protein Complexes

Foods. 2023 Sep 29;12(19):3629. doi: 10.3390/foods12193629.

Abstract

In order to increase the development and utilization of chickpea protein isolate (CPI) and improve the stability of myofibrillar protein (MP) emulsions, the effect of dielectric barrier discharge (DBD) plasma-modified CPI on the emulsifying properties of MP was investigated. Three different O/W emulsions were prepared using MP, MP + CPI complex, or MP + DBD-treated CPI complex as the emulsifier. Compared with the emulsion prepared from MP, the emulsifying activity index and stability of DBD-treated CPI and MP complex (MP + CPIDBD) were increased (p < 0.05) from 55.17 m2/g to 74.99 m2/g and 66.31% to 99.87%, respectively. MP + CPIDBD produced more stable emulsions with the lowest Turbiscan stability index (TSI) values for a given 3600 s. At shear rates from 0 to 1000-1, MP + CPIDBD-stabilized emulsions had higher viscosities, which helped to reduce the chance of aggregation between oil droplets. The optical microscope and particle size distribution of emulsions showed that MP + CPIDBD emulsions had the lowest droplet size (d4,3) and exhibited more uniform distribution. MP + CPIDBD emulsions had lower interfacial tension. DBD pretreatment increased the adsorbed protein content in the emulsion stabilized by MP + CPIDBD as compared to the MP + CPI complex and promoted the adsorption of CPI by higher ratios of adsorbed proteins as indicated by its intensity in SDS-PAGE. Scanning electron microscopy confirmed that the emulsion prepared from MP + CPIDBD had smaller particle size and more uniform dispersion. Therefore, using DBD-modified CPI could enhance the stability of MP emulsions.

Keywords: chickpea protein isolate; cold plasma; emulsion stability; interfacial properties; myofibrillar protein.

Grants and funding

This work was supported by the Thirteenth Five National Key Research and Development Program of China (2018YFD0401200), the Major Special Project of Henan Province (221100110500), the Natural Science Foundation of Henan Province (222300420092), the Henan Province Key Research and Development and Promotion Project (No. 232102110143).