An Improved Grain Growth Model and Its Application in Gradient Heat Treatment of Aero-Engine Turbine Discs

Materials (Basel). 2023 Oct 6;16(19):6584. doi: 10.3390/ma16196584.

Abstract

A new grain growth model was developed by introducing the ultimate grain size to the traditional model. The grain growth behavior and its ultimate size under the Zenner pinning force are also discussed. This model was applied to the nickel-based superalloy and integrated into an FEM code. The grain evolution of a forged third-generation powder superalloy heat treated at different temperatures and holding times was studied. A gradient heat treatment setup was designed and implemented for a full-size turbine disc based on the model prediction to meet the accurate dual-microstructure requirements of an advanced aero-engine turbine disc design. The predicted temperature was validated by thermal couple measurements. The relative error between the prediction and the measurements is less than 2%. The metallographic examination of the whole turbine disk through sectioning showed that the grain size was ASTM 7-8 at the rim area and ASTM 11-12 at the bore region, which agrees well with the prediction. The predicted values of the three measurement areas are ASTM 12.1, ASTM 9.1, and ASTM 7.1, respectively, with a maximum error of 5% compared to the measured values. The proposed model was validated and successfully applied to help manufacture a dual-microstructure aero-engine turbine disc.

Keywords: dual microstructure turbine disk; finite element; grain growth; heat treatment; high-temperature alloy.