Zinc Oxide Nanoparticles Affect Early Seedlings' Growth and Polar Metabolite Profiles of Pea (Pisum sativum L.) and Wheat (Triticum aestivum L.)

Int J Mol Sci. 2023 Oct 8;24(19):14992. doi: 10.3390/ijms241914992.

Abstract

The growing interest in the use of zinc oxide nanoparticles (ZnO NPs) in agriculture creates a risk of soil contamination with ZnO NPs, which can lead to phytotoxic effects on germinating seeds and seedlings. In the present study, the susceptibility of germinating seeds/seedlings of pea and wheat to ZnO NPs of various sizes (≤50 and ≤100 nm) applied at concentrations in the range of 100-1000 mg/L was compared. Changes in metabolic profiles in seedlings were analyzed by GC and GC-MS methods. The size-dependent harmful effect of ZnO NPs on the seedling's growth was revealed. The more toxic ZnO NPs (50 nm) at the lowest concentration (100 mg/L) caused a 2-fold decrease in the length of the wheat roots. In peas, the root elongation was slowed down by 20-30% only at 1000 mg/L ZnO NPs. The metabolic response to ZnO NPs, common for all tested cultivars of pea and wheat, was a significant increase in sucrose (in roots and shoots) and GABA (in roots). In pea seedlings, an increased content of metabolites involved in the aspartate-glutamate pathway and the TCA cycle (citrate, malate) was found, while in wheat, the content of total amino acids (in all tissues) and malate (in roots) decreased. Moreover, a decrease in products of starch hydrolysis (maltose and glucose) in wheat endosperm indicates the disturbances in starch mobilization.

Keywords: pea; polar metabolite profiles; seedling; wheat; zinc oxide nanoparticles.

MeSH terms

  • Malates / metabolism
  • Nanoparticles* / chemistry
  • Pisum sativum / metabolism
  • Plant Roots / metabolism
  • Seedlings
  • Starch / metabolism
  • Triticum / metabolism
  • Zinc Oxide* / chemistry

Substances

  • Zinc Oxide
  • Malates
  • Starch