Arginine Expedites Erastin-Induced Ferroptosis through Fumarate

Int J Mol Sci. 2023 Sep 27;24(19):14595. doi: 10.3390/ijms241914595.

Abstract

Ferroptosis is a newly characterized form of programmed cell death. The fundamental biochemical feature of ferroptosis is the lethal accumulation of iron-catalyzed lipid peroxidation. It has gradually been recognized that ferroptosis is implicated in the pathogenesis of a variety of human diseases. Increasing evidence has shed light on ferroptosis regulation by amino acid metabolism. Herein, we report that arginine deprivation potently inhibits erastin-induced ferroptosis, but not RSL3-induced ferroptosis, in several types of mammalian cells. Arginine presence reduces the intracellular glutathione (GSH) level by sustaining the biosynthesis of fumarate, which functions as a reactive α,β-unsaturated electrophilic metabolite and covalently binds to GSH to generate succinicGSH. siRNA-mediated knockdown of argininosuccinate lyase, the critical urea cycle enzyme directly catalyzing the biosynthesis of fumarate, significantly decreases cellular fumarate and thus relieves erastin-induced ferroptosis in the presence of arginine. Furthermore, fumarate is decreased during erastin exposure, suggesting that a protective mechanism exists to decelerate GSH depletion in response to pro-ferroptotic insult. Collectively, this study reveals the ferroptosis regulation by the arginine metabolism and expands the biochemical functionalities of arginine.

Keywords: arginine; argininosuccinate lyase; ferroptosis; fumarate; urea cycle.

MeSH terms

  • Animals
  • Apoptosis
  • Ferroptosis*
  • Humans
  • Lipid Peroxidation / physiology
  • Mammals
  • Piperazines / pharmacology

Substances

  • erastin
  • Piperazines