Inducing root redundant development to release oxygen: An efficient natural oxygenation approach for subsurface flow constructed wetland

Environ Res. 2023 Dec 15;239(Pt 1):117377. doi: 10.1016/j.envres.2023.117377. Epub 2023 Oct 11.

Abstract

Dissolved oxygen (DO) is a limiting factor affecting the purification efficiency of subsurface flow (SSF) constructed wetlands (CWs). To clarify the causes of oxygen environments and the response characteristics of plant oxygen release (POR) in SSF CWs, this study set three oxygen source treatments by limiting atmospheric reaeration (AR) and influent oxygen (IO) and compared the differences in plant physiological metabolism, DO distribution characteristics, and the purification effect of the SSF CWs at different depths. The results showed that limiting exogenous oxygen stimulated root redundancy of the wetland plants. The root volume and proportion of fibrous roots of the wetland plants increased significantly (p < 0.05). When only the POR existed, the root zone DO increased significantly to 2.05-4.37 mg/L (p < 0.05), and was positively correlated with the TN and TP removal rates (p < 0.05). Additionally, in the presence of POR only, the average removal rates of TN and TP in the top layer were 86.5% and 76.9%, respectively. The proportion of fibrous roots, root zone DO, and root-shoot ratio were key factors promoting the purification effect of the SSF CWs under limited exogenous oxygen sources. Enhancing POR by inducing root redundancy enhanced nitrification (hao, pmoABC-amoABC), plant absorption, and assimilation-related functional genes (nrtABC, nifKDH), and enriched nitrogen and phosphorus removal bacteria, such as Flavobacterium and Zoogloea. This consequently improved pollutant removal efficiency. Inducing root redundancy to strengthen POR produced an aerobic environment in the SSF CWs. This ensures the efficient and stable operation of the SSF CW and is an effective approach for natural oxygenation.

Keywords: Growth redundancy; Oxygen source limitation; Plant physiological response; Purification effect of CW; Rhizosphere oxygen environment.

MeSH terms

  • Environmental Pollutants*
  • Nitrification
  • Nitrogen
  • Oxygen
  • Wetlands*

Substances

  • Environmental Pollutants
  • Nitrogen
  • Oxygen