Unraveling the Dynamic Processes of Methanol Electrooxidation at Isolated Rhodium Sites by In Situ Electrochemical Scanning Tunneling Microscopy

J Phys Chem Lett. 2023 Oct 26;14(42):9448-9455. doi: 10.1021/acs.jpclett.3c02514. Epub 2023 Oct 13.

Abstract

Materials with isolated single-atom Rh-N4 sites are emerging as promising and compelling catalysts for methanol electrooxidation. Herein, we carried out an in situ electrochemical scanning tunneling microscopy (ECSTM) investigation of the dynamic processes of methanol absorption and catalytic conversion in the rhodium octaethylporphyrin (RhOEP)-catalyzed methanol oxidation reaction at the molecular scale. The high-contrast RhOEP-CH3OH complex formed by methanol adsorption was visualized distinctly in the STM images. The Rh-C adsorption configuration of methanol on isolated rhodium sites was identified on the basis of a series of control experiments and theoretical simulation. The adsorption energy of methanol on RhOEP was obtained from quantitative analysis. In situ ECSTM experiments present an explicit description of the transformation of the intermediate species in the catalytic process. By qualitatively evaluating the rate constants of different stages in the reaction at the microscopic level, we considered the CO transformation/desorption as the critical step for determining the reaction dynamics. Methanol adsorption was found to be correlated with RhOEP oxidation in the initial stage of the reaction, and the dynamic information was revealed unambiguously by in situ potential step experiments. This work provides microscopic results for the catalytic mechanism of Rh-N4 sites for methanol electrooxidation, which is instructive for the rational design of the high-performance catalyst.