Effect of mutations on the folding and stability of γ D-crystallin protein

J Biomol Struct Dyn. 2023 Oct 13:1-15. doi: 10.1080/07391102.2023.2266768. Online ahead of print.

Abstract

Interprotein interactions between the partially unfolded states of γD-crystallin (γD-crys) protein are known to cause cataracts. Therefore, understanding the unfolding pathways of native γD-crys is extremely crucial to delineate their aggregation mechanism. In this study, we have performed extensive all-atom Molecular Dynamics simulations with explicit solvent to understand the role of the critical residues that drive the stability of the motifs and domains of γD-crys in its wild type and mutant forms. Our findings show that while the individual motifs of wild type are not stable in the native form, the individual domains remain structurally stable at 425K. This enhanced stability of the domain was attributed to the hydrophobic interactions between the motifs. Single and double point mutations of the domains with negatively charged aspartic and glutamic acid amino acid residues (I3E, W42D, W42E, I3D/W42D, I3E/W42E, and L92D/W157D) decreases the structural stability, leading to unfolding of individual domains of γD-crys. We believe that our study sheds light on the weakest links of γD-crys, along with the role of interactions stabilizing the domains. Further, this study bolsters and provides a better understanding of the domain swapping mechanism of aggregation of γD-crys.Communicated by Ramaswamy H. Sarma.

Keywords: Protein unfolding; aggregation; hydrophobic interactions; molecular dynamics simualtions; mutations.